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For combinations of modified Szasz operators D. X. Zhou gave two equivalent
relations by means of the classical modulus. In this paper we extend these results
by the Ditzian-Totik modulus of smoothness.  © 1998 Academic Press

1. INTRODUCTION

The Szasz-type operators discussed in this paper are given by

Li(f:x)= X 0 [ f0) posl0) di o a(x),
k=0

1.1
e—nx(nx)k ( )
Psl) =
Zhou [6] considered a combination of these operators given by
r—1
Ln,r(f; X): Z ai(n) Ln,—(f’ x)a (12)
i=0
with the conditions (see [2])
(a) n=nyg<--- <n,_, < An;
r—1
(b) la;(n)| < A;
=0 (1.3)
(c) Z a;(n)=1,
i=0
r—1
(d) Y an)yn7*=0, for k=1,2,..,r—1.
i=0

Zhou obtained two theorems in [6].

* Supported by NSF of Hebei.

160
0021-9045/98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



SZASZ-TYPE OPERATORS 161

THEOREM A. Let feC[0, +0), reN, 0<a<r. Then
a/2
LA o) =S <€ (Tan72) " () = O
THEOREM B. Let feC[0, + ), reN, 0 <a<r. We have

L ¥l < M <mm {;C ”2}>(r_a)/2©wf<f, h) = O(h).

Ditzian [1] used w3.(f,?) and gave an interesting direct estimate for
Bernstein polynomials; w?,:( f, ) was also used for polynomial approxima-
tion (see [3]). In this paper we will do this kind of work and our results
contain the results of Zhou [6].

We will use some notations. Let C[0, + o0) be the set of continuous and
bounded functions on [0, +c0) and

ol f,t)= sup sup |40 S (X1, (1.4)
0<h<t x=+ (rhoXx)/2)e[0, + )
K, (f,1)= inf{ | f— gl cro, +o0) 1 lp g™ cro, +oo)}ﬂ (1.5)
K{,ﬂ-(f» ") =inf{ | f— gllcro, +o0) + 1 lp g C[0, + o)
+ /A2 g0 cro, +oo)}9 (1.6)

where the infimum is taken on functions satisfying g"~"e 4. C,,, and

P(x)=/x, 0<i<1.
It is well known (see [4]) that

a)q,a(f, Z)~K¢A(f, tr)~1?¢/1(f, t). (1.7)

(x ~y means that there exists ¢ >0 such that ¢~y <x<c¢y.)

Now we state our results.

IffeC[0, +0), reN, 0<a<r, 0 <A<, then the following statements
are equivalent

L, (fx) = f(x)] = O((n 120, 4(x))"), (1.8)
ol f 1) = 0(1%), (1.9)
@™(x) ILY(f, )] = O((n ™12, = H(x))* "), (1.10)

where J,( l/f~max {o(x), l/ﬁ}.
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Remark. Here we yield a generalization of Zhou’s result. Naturally, as
Zhou’s inverse did not (and could not) cover the range between r and 2r,
the same follows here. For 4 =1, 2r can replace r and obtain corresponding
equivalent relation of (1.8) and (1.9). It is similar to [4, (9.3.3)].

Throughout this paper C denotes a constant independent of n and x. It
is not necessarily the same at each occurrence.

2. A DIRECT THEOREM
In this section we give the direct estimate of (1.9) = (1.8).

THEOREM 1. Let f€[0, +0), re N. Then we have

Ly, (. %) = f(X)] < Cotpal fin ™20, H(x)). (2.1)

Remark. 1If 2r replaces r for A=1, we can get a similar result of [4,
(9.3.1)].

Proof. From (1.6) and (1.7) we may choose g, = g, . ; for a fixed x and
A such that

If = gall < Coly fin™ oL (x)). (22)
n=RST=Ax) g7 | < Cal( fin POl Hx)),  (23)
(0281~ H(x))" =42 || g || < Caol fon ™). (24)

We recall that in [6]
L, (( —x)* x)=0, k=12, ..,r—1
For u between ¢t and x we have

|t_u|r—1< |[_x|r—1

PMu) @

x) (2.5)

and

|t_u|r—l |t—x|’_1

o) T )
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Then by [6, (3.1)] and the Holder inequality using (2.6), one has

L,. <(rll)' jt (t—u)"~" g (u) du, x>

P

|Ln,r(gna x) - gn(x)l <

Z la,(n)] L, (It —x|", x) 67787 6,7(x)

i=1

<Cn="otg | o3t M (x), (2.7)
and similarly using (2.5) we have
|Ly, (80> X) = €u(X)| < Cn="207(x) 0 ~"*(x) | 9" . (2.8)

Thus for fe C[0, + o), xeE,=[1/n, + ), then J,(x)~ ¢@(x) and by
(2.2), (2.3), and (2.8) we have

IL,, (f. x) = f() S CU| f = gall +n77205(x) 9 ~4(x) l9™g1I)
CULf = gull + 120,10 =P(x) [l9™g )
< Col(f,n PO H(x)). (2.9)

For xe E{,=[0, 1/n) then J,(x)~ 1/\/;1, by (2.2)—~(2.4) and (2.7) we have
IL,, (f, x) = f(x)]
SCf = gull +n="20 =2 (x) 077 |l)
SCLIS = gull +n725,0 = D) (lo™g P | +n =2 | g )]

CUIf = gull +1~ P =(x) 07|
(YRR g

< Col( f;n= 25, (x)). (2.10)

From (2.9) and (2.10) we get (2.1).

Remark. 1In the case A =0, our result is Theorem 1 of Zhou [6].

3. AN INVERSE THEOREM
In this section we give the inverse estimate of (1.8) = (1.9).

THEOREM 2. Let feC[0, + ), reN,0<a<r, 0<A<1. Then we have

L, (f %) = f(X)] < C(n =120, = (x))", (3.1)
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with a constant C independent of x and n, if and only if
ol f, 1) = O(t%). (3.2)

Remark. From [6] we know the term J,(x) cannot be replaced by
@(x).

To prove Theorem 2 we need some new notations. Let us denote

Co:={feC[0, +00): f(0)=0},

Ifllo:="sup [05%7P(x) f(x)],
x€ (0, +00)
Chi=1/eCo: |flo< o0},

£l := sup o, D(x) SO,

xe (0, +o0)
C;,:: {fECO:f(r_l)EA'Cloc.a Hf“r<00}

We also need the following lemmas which will be proved in next section.

Lemma 3.1. IfreN, O<a<r, then

ILLOI, <Cn | flo (feCY), (33)
ILLON<CILI, (feC)). (34)

LemMa 3.2. For 0<t<1/8r, rt)2<x<1—rt/2, and 0 < <r, we have

—1/2

t/2 /2 r
j j ok <x+ y uj>du1 e du, < CUOH(x). (3.5)
—1/2 j=1

Proof of Theorem 2. 1t is sufficient to prove the inverse part. Since
L,(f, x) preserves constant, hence we may assume f e C,. Suppose that
(3.1) holds.

In the first place, we introduce a new K-functional as

K3f )= inf {1 = gllo+" g}
By this definition we may choose g € C’ such that
If = gllo+n"" gl <2K3(f,n=""2). (3.6)
From (3.1) we can deduce that

1Ly, (s X) = f(x)]lo < Cn =2,
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Hence by Lemma 3.1 and (3.6) we have
KAL) <|f =L (Nlo+ " L, L)l

< Cnia/2+tr(HLn,r(fig)Hr_’_ HLn,r(g)”r)
SCln= 2+ | f—glo+lgl,)]

< C<n—oc/2 g Koc f n—r/2 >

which implies that [4, 6]
Ki(f, ") < Cr (3.7)

On the other hand, notice that for i=1, ..., r, rtp*(x)/2 < x <1 —rtep(x)/2.
Then we get

(x +(i/2) t9*(x))" + (x — (i/2) t9*(x))"
xr

<27+,

so for ge CY9 we have

ot S 1elo (5, (7)o (4 =5 ) )
R L))
(

+ > (2 + 1) 350 x). (3.8)
Using Lemma 32 for geC’, 0<tp*(x)<1/8r and rtp*(x)2<x<
1 —rtep*(x)/2, we have

<llgllo2"

r
< 275
Iglo2" (5

|47 ()]
(4/2) ¢*(x) (4/2) ¢X(x) r
< f f g7 (x4 Y u; | duy - du,
—(4/2) pX(x) —(4/2) p*(x) j=1

(#/2) p*(x) (t/2) ¢*(x)
lg J . f

5r+oc(li)< Z >du1 d u,

<Gt o) gl (39)

—(t/2) oX(x) —(t/2) H(x)
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From (3.7)-(3.9) for 0<tp*(x)<1/8r, rte*(x)/2<x<1—rtep*(x)/2 and
choosing appropriate g we obtain
| 475:(X) S(X)] < 470500 =&)X + 1474 &(X)]
SCHUTPN NS = glo+ 10~ V(x) gl
tr
< C&:(l—/l)(x) Ko/{ (f; M) < Cr*.
This is desirable.
Remark. 1If 2=0, then our result is Theorem 2 of [6].

4. THE PROOF OF THE LEMMAS

Proof of (3.3). For xe(0, 1/n), 5,(x) ~ 1/ﬁ, we use the representation
[5]

o _ r+oo r r B ; + oo A
L) nkgopn,kmjgo(j)( D [ s 0 S0

For 0 < j<r, we consider

+ oo +oo k+2 B '

k=0 = k=2r+1
:=Il+12.
Obviously we have I, < Cn~" and

i 2r—j 2r—j 2r—j
I,= Z pn,kr(x)xr<1+ P ]><1+k—lj>.”<l+k—r+1><3rxr'

k=2r+1

Hence, we have

L, (f. %)

r

e r +eo a(1—14) .
< 3 past0) 3 (V) [ s 0300 e 111,
k=0 J 0

j=0

r 1 a(l —A)/2r
<o 3 (3 putnn | pue o (e )| sl

j=0 k=0

SCn"2((CH+ 1) n="+3x") =227 1],
Cn" 63 =R (x) 1 f -

N
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So we get for x e (0, 1/n)
|0, C=D)LD(f, X)) < Cr'dn(x) [ fllo < Cr' | fllo- (4.1)

For xe[1/n, + c0) then J,(x) ~ ¢@(x) =\/); and we use the representation
(cf. [4])

r '+oo k i + oo
LO0 =3 L 011t 3 pyto) (= ) n [ 10 st
i=0 =0 n 0

where Q;(nx) is a polynomial in nx of degree [(r—1i)/2] with constant
coefficients, and therefore

) n r+i/2 1
[x7"Q;(nx)n’| < C <> , for xe [, + oo>.
X n
Using the Holder inequality we have
rooi<e 3 ()T B
VLX) < - Do (X)) 0
i=0 @*(x) k=07 g

+ oo -1
x| oI ) di £

< >(r+1)/2 (:ZO:: </;_x>2ipn’k(x)>l/2

0

=+ + 00 ol —A)/2r i
x( Y pusorn [ 6200 pole) dr) 1.

k=0 0

Q

From the procedure of the proof of (4.1) we know that

o1 — 2)/2r

il +o
< Y. PailX) nf OX(t) P alt) dt> < G52 =M (x)
k=0 0

and recalling that [4]
Tk o 1
kgo <n—x> P i(X) < Cn 9% (x), for xe[n, +oo>.
Hence noticing d,(x) ~ ¢(x) for xe[1/n, +00) we have
|0+ 4= D(x) LY, X))
S Cop D) (r+ 1) ne =" (x) 630 = H(x) | fol
<Cn™ | f1o- (4.2)
By (4.1) and (4.2) we have proved (3.3).
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Proof of (3.4). By [5] we have the representation

LY, x) = zpnkmnj Prvsea (1) £

Hence

L (f. %)l

+ + oo
<X pn,k(x)nfo Pk dt) 0,70 dt | £,
k=0

+ o0 + o0 1 —r (—r+a(l—2))/2r
(3 puatorn [ pupsdt (max e ) ) 11,
k=0 0 n

>(—r+oc(1 —A))/2r

+© + oo
<C( X pastorn [ ey mingeory di 11

k=0

We estimate
+oo +o0
Z pnk(x)nj P,,,;H_,(Z) t—"dt
k=0 0

+oo +oo k! J
= r 1) ——dat
kgo Prilx)n L) 7P ill) (k+7r)!

+ oo
= Z pn,k+r(x)x_r<x_r‘
k=0
So we have
ILO(f, x)] < Clmin{x 7, n7} )+ Q=220 £ < Co =R (x) | £,

This is desirable.

Proof of (3.5). From [6, (4.11)], using the Holder inequality we can
deduce (3.5) easily.

5. A CONNECTION BETWEEN DERIVATIVES
AND SMOOTHNESS

In this section we will give an equivalent relation between the derivatives
of L, and the modulus of smoothness which contains the results of [ 6] and
part of the results of [5].
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THEOREM 3. Let fe C[0, + ), reN, 0< A< 1. We have
lp¥(x) LY(f, x)] < Cn25,77 0 = D(x) ol fin =20, H(x)),  (5.1)

where @(x) =\/;, 0,(x)=¢p(x)+ 1/f~max{(p(x), 1/ﬁ}.

To prove (5.1) we need the inequalities

0¥ (x) L (f )] < Cn20 770 =(x) | f ] o (52)
0% (x) LY )< 9" . (53)

Obviously from (5.2) and (5.3) we can derive (5.1) easily.

Proof of (5.2). We discuss two cases separately.
If xe (0, 1/n), then J,(x) ~ 1/\/;1 and by [6, (4.9)] we have

—r(1—2)

1
97(2) LY x)] <20 | £ < O™ <f> 11
n

<25, A(x) | f1. (5.4)
If xe(1/n, +o0) then J,(x) ~@(x) and by [6, (4.12)] we have

lp*(x) LY(f, x)| = "~ D(x) |@"(x) LY(f x)| < Cn?6,77 = D(x) || f].
(5.5)

From (5.4) and (5.5) we get (5.2).

The relation (5.3) can be proved in the same way as in [ 6, Lemma 5.17,
we omit the details. Now the proof of (5.1) is complete.

THEOREM 4. Let feC[0, +0), reN, 0<a<1, 0<A<]1. Then
lp* (%) L (fs x)| < C(n =126, = 4(x))* =" (5.6)
implies
i f, h) = O(h*). (5.7)

Remark. We will prove the statement as in [6]. The commutativity of
the operator is also crucial in the proof here.

Proof. Let 0<t<h<1/8r, x>rtp*x)/2. By [1] we have the com-
mutative property.

L,(L,f)x)=L,(L,f)(x),  for m,neN.
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By Theorem 1 noting x + (j —r/2) tp*(x) <2x we then have
|4y Ln S (X)]

Zr: <;> (_ 1 )rij {Ln,r <me; x+ <]_£> t(pl(x)>
L (£ (15 )00 )+ | T o) i L L)
< 5 () eons (Lt )+ St

(1/2) ¢X(x) (1/2) 9X(x) " i r
xj J LOVL, fix+ ) u
1

—(1/2) *(x) j=

From (5.6) we can deduce that by J,(x) ~ max{¢p(x), l/ﬁ}

<

r—1

duy du, - du,
—(1/2) p*(x)

[9¥(x) LS, )| < Ca= (2=,

5.8)
|07 (x) LY, x)| < Cn~ P01 =he=n( ), (59)
From (5.3), (5.8), and (5.9) we have
’L(’) <Lnif,x+ Y u]>
j=1
=(p"<x+ > u > ’(p <x+ Y ou >L(') <fx+ You >
j=1 j=1 j=1
<Cop=* <x+ Y uj> —(1/2)2 =2 —r) (5.10)
j=1

and

N~
IF
TN
N~

=
PN
\:

x+j§1 >

e Sl o) e )
j=1
< Cop—r+ai=2) <x+ z uj>n‘“/2)‘°‘_”. (5.11)

j=1
By [6, (4.11)] with the Holder inequality we can easily get for 0 <f<r

(t/2) p*(x) (2/2) pH(x)
j=1

(5.12)

—(1/2) X(x) —(1/2) 9H(x)
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Hence by (5.10)—(5.12) we have

|40 Lon ()]
<Cal (L, f.n="?5),74(x))

r—1

+ Y |ay(n)] Cmin{n=D@=Da=nyr ry=(12)=ng1 == )}
i=0

< C{olL,.f, n=26 A X)) + 1 (n 6 T A(x)) ) (5.13)

The following demonstration is very similar to [6]; we omit the details.
From (5.13) we can obtain (5.7). The proof is complete.
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